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the coupling imbalance is less than 1 dB. The isolation of the

coupler is better than 30 dB over the frequency range measured

by a digital voltmeter.

IV. CONCLUSION

An ultra-broad-band 3 dB coupler can be designed by taking

advantage of strong coupling and dielectric waveguides with

different dimensions. The bandwidth is much broader than that

attainable in [1]–[8] while maintaining high directivity.

No extensive optimization techniques were used in the design

of these couplers, and the dimensions and materials were cho-

sen on the basis of convenience and availability.

Experimental results were presented in the frequency range

76-110 GHz which indicate agreement with the theoretical

calculations (70–1 16 GHz). This ultra-broad-band coupler is

simple to fabricate and has potential applications for millimeter,

submillimeter, and optical wave bands.
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De-embedding and Unterminating Microwave

Fixtures with Nonlinear Least Squares

DYLAN WILLIAMS, MEMBER, IEEE

Abstract —This paper investigates a general method of characterizing

microwave test fixtures for the purpose of determining the S parameters

of devices embedded in the fixture. The accuracy of the technique was

studied and compared with that of the common open–short-load and

thrn-reflect-line methods. Increased accuracy was obtained using redun-

dant measurements.

I. INTRODUCTION

At microwave frequencies it is often impossible to directly

measure the scattering parameters (S parameters) of a device

under test such as a transistor or a microstrip circuit. Instead,
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Fig. 1. The measurement configuration under consideration in this work.

The S:k are the S parameters of the test fixture and inserted standard

calculated from the ideal S parameters of the standard and the assumed S

parameters describing the fixture. The S~,mk are the measured S parame-

ters of the test fmture and the inserted standard.
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Fig. 2. The OSL, TRL, and more general standard sets investigated in this
work are depicted schematically. (a) OSL standard set. (b) TRL standard

r~ and -y unknown. (c) General standard set; r~ and y may be unknown;

1, are known.

measurements are made at the reference plane of a network

analyzer, which is removed both physically and electrically from

the device under test by an intervening test fixture. Usually this

fixture has high isolation between its input and output ports and

can be described electrically by two two-port networks, as is

illustrated in Fig. 1.

Once the S parameters of the two-port networks which de-

scribe the fixture are known, the S parameters of the embedded

device may be determined from measurements at the reference

plane of the analyzer. This procedure is straightforward and is

referred to as de-embedding.

Generally it is not possible to directly measure the electrical

characteristics of the fixture. The fixture must be characterized

from measurements made at the analyzer reference plane when

known devices, which we will call standards, are embedded in it.

This process is referred to as unterminating [1].

AU open, a short, and a matched load are used as the

standards in the common open-short-load (OSL) technique of

unterminating. These standards are depicted in Fig. 2(a). Each

standard is connected in turn to each of the ports inside the

fixture, resulting in six measured reflection coefficients. Under

the assumption that the fixture is a reciprocal network, the
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numbers of measurements and unknowns are equal and the

fixture may be unterminated.1

Bauer and Penfield [1] have extended the OSL technique to

include an arbitrary number of known loads. Using a least-

squares algorithm, they showed that impmved accuracy Qver the

OSL technique can be obtained.

Franzen and Speciale [2] introduced the thru-reflect-line

(TRL) method of unterminating. A thru line of minimum length,

a thru line of a longer length, and a highly reflective load are

used as standards; these are depicted in Fig. 2(b). Engen and

Hoer [3] showed that because the number of measurements is

larger than the number of unknowns, both the electrical delay of

the thru line and the reflection coefficient of the highly reflec-

tive load may be determined during the unterminating proce-

dure. The TRL technique has become popular due tQ its unique

advantage of not requiring that the standards be fully character-

ized. Hoer [4] has improved the accuracy of the TRL technique

by increasing the number of standards.

In many cases the accuracy with which the fixture’s S parame-

ters are unterminated dominates the total measurement error.

The OSL and TRL methods use greatly different solution algo-

rithms. This complicates side-by-side evaluation and explains

the absence of a direct comparison in the literature.

In this work a very general unterminaticm algorithm is devel-

oped. The standards may be chosen arbitrarily. The OSL and

TRL methods are shown to be special cases Qf this algorithm,

making it easy to perform a direct comparison of the perfor-

mance of the methods. The general algorithm developed in this

work allQws the use of any number of standards to increase

accuracy.

In Section II an unterminating procedure based on a nonlin-

ear least-squares algorithm is described. The OSL and TRL

procedures are shown to be special cases of the more general

unterminating procedure described here. A numerical technique

for determining the accuracy of the unterminating procedure is

discussed in Section III. The accuracy crf the unterminating

procedure with different standard sets and under different as-

sumptims is studied in Section IV. Comparison of the accuracy

of the OSL and TRL procedures with each other and the more

general unterminating procedure is easily accomplished by virtue

of the OSL and TRL procedures being special cases of the more

general procedure developed here. Procedures which achieve

the greatest accuracy are recommended in Section V.

II. UNTERMINATION PROCEDURE

Untermination is the process of determining the S parame-

ters of an embedding netwcmk frQm measurements of various

standards or known devices embedded in the network. TQ fix

ideas, let the S parameters of the k th standard be Sz~k, let the S

parameters describing the intervening fixture be SF and S~2,

and let the calculated S parameters of the fixture with the kth

standard embedded inside of it be S,~k, as shown in Fig. 1. FQr

the special case in which all of the networks are reciprocal (i.e.,

having Slz = S21), the measured S parameters S~k of the fix-

ture with the k th standard embedded in it are related to the S

lUnder the assumption of reciprocity, the fmture transmission coefficients

S~$ and S{$ are equal, resulting in only three unknown complex quantities

per fmture two-port. After the fixture has heen unterminated there remains

an ambiguity in the sign of the fixture transmission coefficient. This ambigu-

ity may be resolved by a transmission measurement.

parameters of the kth standard S~k by

S;~’ = F,,(Se,S~?>%) (1)

where the F,j are complex nonlinear functims of the elements

of the scattering matrices S~l, Sf2, and SZ;h. The function F,j

may be found by calculating and cascading the transmission

matrices Qf its parameters and then converting the resulting

transmissim matrix back into S parameters. In some cases, such

as the TRL case, it is convenient to let the S parameters S1~kof

the standards be functions of the propagation constant y of a

transmission line and the reflecticm coefficient r“ of a terminat-

ing load.

If the S~j”*k are defined as the S parameters measured by the

analyzer of the fixture with the k th standard embedded in it, the

S/,mA will differ fmm the Sl~A by some small measurement error.

We can define a vector of residuals, r,;, as

,,( 1,1, in in)
~k = Srmk _ Smk = Sttnk _ F Sfl Sfz Sak

LJ LJ i] l]
(2)

The values ~~1 and ~~ (and ~ and ~~ if they are not known]

for which the sum of the squares of the residuals is a minimum

are knQwn as the least-s flyares estimates of S~l, SF, y, and 17~,

respectively. Thus ~~1, S~ , ~, and ~~ satisfy

Zlrfi(N&~3~L)12 is aminimum. (3)
kg

These estimates are, in the least-squares sense, the best approxi-

mation to the actual values Qf S~l, S~, y, and 17~for a given set

of measurements S,jmk.

The least-squares estimates ~1~, ~~, +, and ~~ of S{l, S?, y,

and r~ may be found by a variety of standard numerical tech-

niques. In this wak the IMSL subroutine DUNLSF,Z which is

based on the Levenberg-Marquardt algorithm and a finite dif-

ference Jacobian, was used [5]. The algorithm calculates the

Jacobian of a real vector functicm for a set Qf guessed parame-

ters using finite differences. The Jacobian is used to calculate

better guesses for the parameters of a nonlinear functicm until

convergence is reached.

The functions ~j are complex vector functions of the complex

parameters S~l, S~, y, and r~. The subroutine DUNSLF was

used to find the least-squares estimates of S~l, {~, y, and r~.

That is, the subroutine DUNSLF was used to fmd the values
,ff~ ~fz ~ and ~= for which the sum of the squares of the

l] : 11”

residuals r,: was minimized.

The subroutine DUNSLF was written to operate on real

vector functims of real vectcrrs. In order to find the solution to

this problem, the real and imaginary elements of the complex

vectors were mapped into real elements of real vectm-s fm- the

purpme of solving the problem numerically. Thus for each

possible value Qf k (one for each standard) and index ~ (where i

and j assume values of (i= 1, j = 1), (i = 2, j = 2), and (i = 2,

j = 1)1, an index Z was assigned. The real and imaginary parts of
each complex r,f were mapped intQ indices 21 – 1 and 21 of a

corresponding real vector G where

G=(Re(r~l), Im(r/l), Re(r~2), Im(rj2), Re(r!l),

Im(r~l), Re(r~l), Im(r~l), . . . ) (4)

2The IMSL subroutine library is a set of mathematical and statistical

subroutines and is available from IMSL, 2500 Park West Tower One, 2500

City West Blvd., Houston TX 77042,
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Fig. 3. A scatter plot of normalized residuals for an ideal fixture and

several representative standard sets. The solid lines indicate the computed

variance.

is the real vectm function to be minimized in the least-squares

sense. The arguments of G (the SC, SF, y, and r~) were

arranged into a real vector in a similar way, allowing the

subroutine DUNSLF to be used without modification.

III. ANALYSIS OF RANDOM ERRORS

Both random and systematic errors are introduced during the

process of de-embedding. In most cases the systematic measure-

ment error is due to systematic deviations in the standards from

ideal standards and cannot be rem’oved from the measurements.

These systematic errors can only be estimated from fundamental

considerations, and their treatment is beyond the scope of this

work. Random measurement errors can be reduced by statistical

analysis, and will be discussed here.

The variance-covariance matrix of the parameters of the ~j

is a measure of the error due to estimating those parameters

from the data when the errors in the data are normally dis-

tributed. The variance-covariance matrix o is approximately [6]

~=~z(p’’)”l (5)

where JT is the transpose of J, the Jacobian of the real

mapping of F, and S2, a scalar, is the variance of the data. The

quantity S2 depends on the accuracy of the measured data and is

independent of the number of standards used. We shall call the

quantity

(6)

the normalized variance of SF, where 1 is the index which has

been assigned to St in the solution process and k is 1 or 2. The

normalized variance of SF is a good measure of the accuracy of

~~ as determined by the algorithm. The normalized variances

of y and J7L are defined in an analogous fashion.

The suitability of the normalized variance for predicting er-

rors was verified using a Monte Carlo technique. The S parame-

ters at the plane of the analyzer were perturbed 100 times by

adding small normally distributed random numbers to both their

real and imaginary parts, yielding 100 sets of S/Jrnk. The least-

squares estimates were calculated each time and the differences

——-20”<7 LLINE<16(Y’—

— L—-
0.1 0.2 0.3 0.4

YLLINE

Fig. 4. The normalized variances of the TRL procedure are plotted as a

function of the length of the transmissi~n line standard.

between the real and imaginary parts Qf the residuals were

plotted. The normalized variance of the least-squares estimates

was also calculated and indicated on the plots,

This procedure was repeated for several sets of fixture S

parameters and several sets of standard<. In all cases, the

computed normalized variance was found to predict the actual

variance accurately. An example of such a plot is shown in

Fig. 3, in which the fixture was assumed to have a transmission

coefficient of 1 and a reflection coefficient of O. In this case the

number of least-squares estimates lying inside the calculated

variance was 67.5V0, extremely close to the ideal value of 68.3$Z0,

indicating that the calculated normalized variance was a good

estimate of the accuracy of the algorithm.

IV. NUMERICAL RESULTS

In the special case in which the number of unknowns and the

number of measurements are the same, there is a set of parame-

ters of the Fij for which the residuals are zero. This set of

parameters of the ~j are also the least-squares estimates of the

Fij. In both the 0S1. and TRL procedures the number of

unknowns and the number of measurements are equal. Thus in

both of these cases, the nonlinear least-squares algorithm used

in this work converges to the same solution as the OSL and

TRL procedures. This is useful because it allows the OSL and

TRL procedures to be compared directly with the more general

algorithm and with each other.

Most practical fixtures have low insertion losses and small

reflection coefficients. Thus the normalized variances of an

ideal symmetrical fixture with no transmission loss and a reflec-

tion coefficient of zerQ will be representative of the normalized

variances of many practical fixtures. This ideal symmetrical

fixture will be used as a benchmark for the purpose of compari-

son.

As an example of the utility of this benchmark, consider the

TRL untermination procedure. If the delay line standard is a
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Fig. 5. The normalized var]ances of the untermination procedure are plot-

ted as a function of the number of thru lines and reflective loads. The total

number of standards is always 10.

quarter-wavelength long, the accuracy of the procedure is opti-

mum. It has been recommended by one manufacturer of auto-

matic network analyzers that the length of the line be greater

than 2tP and less than 16P. Fig. 4 shows the normalized vari-

ances of the TRL procedure calculated from (6) for an ideal

symmetrical fixture. It is clear from the figure that the line

length should indeed be constrained within this interval.

In Fig. 5 the normalized variances for an unterminating

procedure utilizing n thru-line standards and m reflection stan-

dards are plotted. In each case the total number of standards

was 10. The length lL of the ith thru-line standard was chosen so

that ylt = m(i – 1)/ n. The reflective standards were distributed

uniformly around the outside of the Smith chart. Thus the ith

reflective standard was composed of two transmissicm lines of

length yl, = di – 1)/m terminated in open circuits, one con-

nected to each port. These standards are depicted schematically

in Fig. 2(c). (It might be thought that the use of zero-length

standards restricts the applicability of this method. It is easy to

show, however, that virtually identical results can be obtained by

offsetting all of the standards by a set amount and later adjust-

ing the reference plane of the measurement.)

The normalized variances are pkXted for two cases. In the

first case, the propagation constant y and the reflection coeffi-

cient r~ of the open circuit are assumed known and are fixed

during the untermination algorithm. In the second, the propaga-

tion constant y and the reflection coefficient r~ are assumed to

be unknown and their least-squares estimates are determined

during the untermination procedure. In both cases the charac-

teristic impedances of the thru lines and offset lines are as-

sumed to be known and identical, and provide the characteristic

impedance to which the system is calibrated.

It can be seen from Fig. 5 that if the propagation constant y

and the reflection coefficient r~ are known and fixed during the

untermination procedure, the accuracy of the untermination

procedure increases as more loads and fewer thru lines are

used. When no reflective loads are used the normalized variance

becomes infinite as no reference plane can be established.

The figure also shows that if the propagation constant y and

the reflection coefficient r~ are unknown and their least-squares

estimates are found during the solution procedure, the accuracy

of the untermination procedure is greatest when equal numbers

of thru lines and reflective loads are used for standards. In this

~ e(S~J for offset reflective loads

o–––o e(S~l) for offset reflective loads

. e(S~l ) for OSL method scaled as ~
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Fig. 6. The normalized variances of the untermination procedure are plot-

ted as a function of the number of reflective loads. The propagation

constant y of the transmission lines in which the loads are offset and the

reflection coefficient r~ of the offset loads are assumed to be known.
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case the normalized variance is infinite when either no loads or

no thru lines are used, again because a reference plane cannot

be established.

In Fig. 6 the normalized variances of fixture S parameters are

plotted as a function Qf the number of standards. In this case y

and r~ are assumed known. The standards were of the reflective

type, with the ith standard consisting of two transmission lines

of length yl, = z-(i – 1)/n terminated in an open circuit. The

improved accuracy as the number of standards is increased is

clearly apparent in the figure.

Also plotted in the figure, for purposes of comparison, are the

normalized variances of the OSL method scaled by ~, the

factor by which the normalized variance would be decreased if

redundant measurements were made. The figure shows clearly

that the reflective standards provide greater accuracy in unter-

minating than the OSL method, at least for the case studied

here.

In Fig. 7 the normalized variances are plotted for the case in

which the least-squares estimates of y and r~ are found during
the untermination procedure. In this case, the ,S~” are functions

of y and r~. This is also the case for the TRL method, and its

normalized variances scaled as ~ are plotted in Fig. 7 for

comparison. A comparison of Figs. 6 and 7 reveals that the TRL

method is much closer to optimum than the OSL method.

V. CONCLUSION

A general unterminating technique has been described. The

technique was used to investigate de-embedding under the as-

sumptions that all measurement errors are random and nor-

mally distributed and that the standards are distributed uni-

formly around the Smith chart. It was shown that for any given

number of standards, the greatest accuracy under these assump-
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coefficient r~ of the offset loads are found during the untermination

procedure.

tions is achieved by utilizing a large set of known reflective

loads. When the propagation constant and the reflection coeffi-

cients of the standards are not known, then equal numbers of

thru lines and reflective loads give the highest accuracy, al-

though not as high as when the propagation constant and

reflection coefficients are known. It was shown that the OSL

technique was considerably less accurate than using sets of

offset reflective loads.

The technique of unterminating illustrated here is very gen-

eral and could be easily used to calibrate network analyzers.

While the algorithm is computationally intensive, it may find

application in practical situations because of, its flexibility and

accuracy. Furthermore, the variance of the data S2 may be

estimated from the residuals if more than three measurements

are taken, allowing the variances of the least-squares estimates

in the untermination procedure to be estimated.. The variance of

the

[1]

[’21

[3]

[4]

[5]

[6]

de-embedded data could then be estimated as well.
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Microwave Radiometric Imaging at 3 GHz for the

Exploration of Breast Tumors

B. BOCQUET, J. C. VAN DE VELDE, A. MAMOUNI,
Y. LEROY, G. GIAUX> J. DELANNOY,

AND D. DELVALEE

Abstract —A process of microwave radiometric imaging working at 3

GHz permits the mapping (of radiometric intensities on a square area

about half a decimeter on a side. These data, translated in terms of

colored image, point out the existence of lateral temperature gradients

in the tissues. This systcm was initially used in order to examine large

breast tumors; at present, it is also used for the detection of smaller,

impalpable tumors. We try to define the roles for the characterization of

benignity or malignancy of small tumors which appear in a mammo-

graphic examination (X rays). The definition of an appropriate parame-

ter, deduced from this image processing, seems to make it possible to

indicate if the tumor is benign or malignant.

I. INTRODUCTION

For several years, because women are more aware of breast

lumps, more breast tumors have been discovered at an early

stage. Therefore, new problems arise for differential diagnosis.

Indeed, these tumors are often so small that they cannot be

investigated with clinical examination. Because some of these

lumps cannot be characterized by mammography or percuta-

neous cytology, it is often necessary to resort to surgeq, al-

though most of the lumps are not cancers. This is quite unsatis-

factory since the cost is not negligible, no surgical procedure is

harmless, and scars may change the breast structure enough to

prevent early diagnosis of any future cancer, not to mention

aesthetic and psychological problems. Therefore, a noninvasive

method effective for tumor discrimination would be very wel-

come. For several years, microwave radiometric imaging has

been used in an attempt to increase the reliability of diagnosis

[1]-[12].

We have conceived an imaging process using a multiprobe

radiometer which increases the number of measurements and

improves their localization. We explain how this process is used

now for the examination of tumors of the breast, in order to try

to define the rule: for the characterization of benignity or

malignancy, mainly for situations where the usual screening

process—mammography--has failed.

II. MATERIALS AND METHOD

The multiprobe radiometer [81, [9], working in the bandwidth

2.5–3.5 GHz, is made of a classical low-noise receiver with a

gain of 50 dB and a noise factor of 5.5 dB. Consequently, its

sensitivity is + O.l”C. The multiprobe is a result of the @xtaposi-

tion of six open-ended apertures of rectangular waveguides
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